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How many photons are needed for FRET
imaging?
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Abstract: Förster resonance energy transfer (FRET) imaging is an essential analytical method
in biomedical research. The limited photon-budget experimentally available, however, imposes
compromises between spatiotemporal and biochemical resolutions, photodamage and photo-
toxicity. The study of photon-statistics in biochemical imaging is thus important in guiding
the efficient design of instrumentation and assays. Here, we show a comparative analysis of
photon-statistics in FRET imaging demonstrating how the precision of FRET imaging varies
vastly with imaging parameters. Therefore, we provide analytical and numerical tools for assay
optimization. Fluorescence lifetime imaging microscopy (FLIM) is a very robust technique with
excellent photon-efficiencies. However, we show that also intensity-based FRET imaging can
reach high precision by utilizing information from both donor and acceptor fluorophores.
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1. Introduction

Förster resonance energy transfer (FRET) is the non-radiative transfer of energy from a donor
fluorophore to an acceptor chromophore [1,2]. The probability for a molecule to transfer energy
via FRET (E, FRET efficiency) is typically sensitive to distances within the nanometers range
[3]. Therefore, for its high sensitivity at the nanometer scale, FRET has many applications in
biophysics and biomedical sciences (reviewed in [4–7]). FRET results in the reduction of the
quantum yield and the fluorescence lifetime of the donor fluorophore. In the instances where the
acceptor is fluorescent, FRET also causes acceptor sensitized emission [1]. The quantification of
the intensity emitted by an acceptor normalized to the signal emitted by a donor fluorophore is
often referred as sensitized emission FRET or seFRET. Fluorescence lifetime imaging microscopy
(FLIM) [8–10] is one of the methodologies that enables researcher to quantitate FRET; among
the various implementations of FLIM [1,5,11], time-correlated single-photon counting (TCSPC)
is regarded as the gold-standard for its high precision and accuracy [12,13].
Figure 1 illustrates concepts that are useful to understand FRET detection by comparing the

flow of information from light source, fluorophores to detectors with an analogy to the flow of a
liquid. Excitation light pumps the exited state of a fluorophore (Fig. 1(a)) which then decays to its
ground state emitting light, as if it was water (green shaded) dripping from a hole at the bottom
of a bucket into another container (the detector). FRET provides a second de-excitation pathway
that permits energy to flow to an acceptor that will dissipate its energy by emitting red-shifted
photons. Measurements of donor (IDD) and acceptor (IDA) intensities excited at a wavelength
optimized for donor excitation provide a quantification of FRET. In practice, excitation light
directly pumps the excited state of an acceptor fluorophore (Fig. 1(a); direct excitation, DE), and
spectral emission overlap between fluorophores causes light from the donor to ‘spill-over’ into
the acceptor channel (Fig. 1(a); spectral bleed-through, SBT). Cross-talks thus render ratiometric
FRET sensitive to the relative concentration of donor and acceptor fluorophores. Rather than
measuring the relative intensities of a FRET pair, FLIM quantifies FRET by measuring the
average time that donor molecules spend in the excited state (Fig. 1(b)), thus avoiding the need to
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correct for cross-talks. Intensity-based techniques, however, require corrections that are provided
by multi-colour (referred to as three -channel or -cube, corrected or precision FRET [14–18]) or
hyperspectral imaging [19–22].

Fig. 1. Quantification of FRET by FLIM and seFRET. Excitation light pumps a population
of excited fluorophores, here represented as blue (donor) or yellow (acceptor) buckets. In an
ideal system, the light source (blue tap) excites only the pool of donor fluorophores directly
(a). Excitation energy then is either transferred non-radiatively to the acceptor or emitted as
photons and collected by detectors, here represented by the bottom blue (IDD) and yellow
(IDA) plates. The ratio of IDA and IDD can be used to estimate FRET. In practice, direct
excitation of the acceptor (DE) and spectral bleed-through from donor to acceptor (SBT)
contaminate the FRET signal. FLIM (b) avoids cross-talks between donor and acceptor
by estimating the presence of FRET by the time a fluorophore spends in its excited state.
Quantitative implementations of seFRET requires the estimation of cross-talks using a third
image (IAA in c) from which correction factors (AER in d, and DER in e) can be estimated.
These parameters are used to subtract spill-over contributions from the FRET-sensitized
acceptor emission (f, cFRET). FRET efficiency (E) can be then estimated by normalizing
cFRET to the donor (dFRET) or acceptor emission (aFRET) that would have been measured
with E= 0 or E= 1, respectively.

Quantitative seFRET requires at least the acquisition of the acceptor fluorescence excited at a
wavelength optimized for the excitation of the acceptor (IAA, Fig. 1(c)). The acceptor excitation
ratio AER= [IDA/IAA]A – obtained by exciting a sample containing only the acceptor fluorophores
(Fig. 1(d)) – enables the estimation of direct excitation. Similarly, the donor emission ratio
DER= [IDA/IDD]D - measured with a sample containing only the donor fluorophore - is used
to estimate the donor spectral bleed-through (Fig. 1(e)). The corrected FRET signal (cFRET)
can be then evaluated for each pixel as: cFRET= IDA-DER IDD-AER IAA (Fig. 1(f) and [14,15]).
FRET efficiency is estimated by relating cFRET to the intensity that would have been emitted
by the donor dFRET=η cFRET / (IDD+ η cFRET) or acceptor aFRET=ε cFRET / IAA either
if FRET did not occur or if E= 100%, respectively (Fig. 1(f)). ε and η are the ratio of the
donor/acceptor excitation light intensities and detection efficiencies, respectively, parameters
that are measured with a reference sample of known FRET efficiency (see Appendix 2). dFRET
and aFRET are good estimators for the apparent FRET efficiency [14], i.e., E multiplied by the
fraction of interacting donors (fD) or acceptors (fA), respectively. Protocols for the estimation of
seFRET are described in [14,15,23] and comparison between different nomenclatures are shown
in Tables 3–5.
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Biological applications of FRET and FLIM are constrained by the limited photon-budget
available, i.e. the number of detectable photons within a reasonable exposure time limited by
photodamage and phototoxicity, or by the spatiotemporal and biochemical resolutions required to
characterize dynamic biological processes. The role of photon-statistics in FRET imaging has
been characterized, more extensively for FLIM applications [8,10,24–31] and, to our knowledge,
at a lesser extent for intensity-based techniques [32,33]. Here, we study the role of photon-statistics
in seFRET and provide a theoretical comparison of the physical limits in precision between
seFRET and TCSPC. Interestingly, seFRET performs very well from a theoretical perspective,
resulting in high precision because of the efficient utilization of information from both donor
and acceptor signals, suggesting strategies to enhance the biochemical resolving power in FRET
microscopy.

2. Results

2.1. Fisher information matrix and seFRET

How many photons are necessary to estimate FRET? The answer to this question depends
on the precision we want to achieve. In addition to other sources of errors not considered in
this work, fluorescence detection always exhibits at least Poissonian noise [25,32,34]. Fisher
information theory permits us to estimate the Cramer-Rao lower bound (σ, CRLB), i.e. the
smallest achievable statistical error in the estimate of a random variable. Given ND detected
photons, we can often write σ = σ̃N−0.5D where σ̃ depends on imaging parameters but not on ND.
Therefore, σ̃ represents the photon-efficiency of a method. To compute σ̃, we first developed
the analytical description of the Fisher information for a three-filter seFRET that is used for
live cell imaging [14,15,17,35] following the method described in the seminal work of Watkins
et al. originally for single-molecule FRET (Appendix 1 and Ref. [32]). In single-molecule
detection, IAA can be disregarded, but its measurement has significant implications for seFRET.
The step-by-step analytical derivation of our analytical framework is described in Appendix 2.
Briefly, we evaluated the Fisher information matrix J and the element (J−1)11 of its inverse that
gives CRLB [32,36] for the variance of dFRET (i=D) and aFRET (i=A):

σ2
Ei
= (JiFRET

−1)11 = N−1P (σ̃
2
B + σ̃

2
SBT + σ̃

2
E) (1)

σ̃2
Ei
= σ̃2

B + σ̃
2
SBT + σ̃

2
E describes the contribution of background, spectral bleed-though and FRET

efficiency to the standard deviation of the FRET estimators (see Eqs. (32)–(34) for dFRET and
Eqs. (35)–(37) for aFRET in Appendix 2 for analytical descriptions).
Therefore, σ̃Ei

is a representation of how statistical errors for the FRET estimators scale
relative to NP. In the next sections, we describe σ̃Ei

-curves as a function of FRET efficiency and
experimental conditions. Figure 2(a) provides guidance to interpret Figs. 2–5. For example, we
can estimate that at E= 0, σ̃=0.3 and with NP=1,000 photons we would then expect to measure
E∼0.00± 0.01 (σ = σ̃N−1/2P ). Conversely, σ̃-values can also permit us to estimate the number of
photons (ND = σ̃

2σ−2, see Eq. (38)) needed to attain a predefined statistical error. For instance,
if we set σ = 0.05, from the curve shown in Fig. 2(a) we infer that a budget of 3,600 photons is
necessary (ND = σ̃

2σ−2) to estimate E∼0.50± 0.05 (see Table 1 for a few case studies).

2.2. Cramer-Rao lower bound for TCSPC

To provide a reference for the theoretical efficiency of seFRET, we studied the expected statistical
error for the estimation of FRET by TCSPC, the gold-standard in FLIM detection [5]. For
the estimation of FRET, we consider a double-exponential model with a known unquenched
fluorescence lifetime (τ0) and total photon counts (NP), and with unknown fractional contribution
(f ) and FRET-dependent lifetime (τ0(1-E)) to be fitted. We could not calculate the analytical
solutions for this model. Therefore, we studied the problem numerically (see Methods) by
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Fig. 2. Photon-economy in FRET estimation by TCSPC. The σ̃ values were obtained
numerically. The mock curve in (a) exemplifies how the σ̃ values can be used. Divided
by NP

0.5, σ̃ returns the expected standard deviation on the FRET estimate. When squared
and divided by the maximum variance that might be targeted in an experiment, σ̃ provide
an estimate of the minimum number of photons that should be collected (ND). Numerical
estimations of the standard deviations of FRET estimates measured with FLIM, for an ideal
system (b) with Dirac-like IRF for τ0=1ns (blue), 3ns (black lines and yellow area) and 10ns
(magenta) or with a finite IRF of 38ps fwhm (c). Curves of the same color show f= 10%,
50% and ∼90% from top to bottom. (d) Simulations for τ0=3ns, with an uncorrelated
background that must be estimated, with values of 0 (magenta), 100 (black curves and yellow
area) and 1,000 photons (blue).

Table 1. Examples of photon-budget required to attain a standard deviation of 5% in FRET
efficiency.

case study TCSPC dFRET aFRET

E fD σ̃ ND
a E σ̃b ND E σ̃b ND E

50 50 1.4 1,150(1,500) 50 0.53/3.5 110/5,000 25 1.5/9.4 900/35,000 50

20 20 2.1 1,800(1,900) 20 0.21/2 20/1,600 4 1.5/10.5 900/42,000 20

75 98 0.5 100(370) 75 0.6/2.6 150/2,700 74 1.6/9.3 1,000/35,000 75

75 36 10 40,000(51,000) 75 0.52/2.7 110/2,900 27 2.2/10 1,900/41,500 75

20 98 0.43 75(90) 20 0.56/6.7 190/18,000 20 0.7/8.6 200/30,000 20

aNumber of photons required for donor imaging by FLIM (available photon-budget including SE)
bvalues of σ̃ in the absence of cross-talks (as in Fig. 3) / values in the presence of cross-talks (as in Fig. 4, confocal
system)

adapting code originally developed by Bouchet et al. [36]. The Cramer-Rao lower bound for the
standard deviation of the FRET estimate is shown in Fig. 2(b)–(d). In Fig. 2(b) we assumed an
ideal Dirac-like instrument response function (IRF), for τ0=1, 3 and 10 ns. For each of these
values, we varied f from 10% (higher curves), 50% (middle curves) and ∼90% (lower curves)
maintaining the number of photons emitted by non-interacting donors at 1,000 and varying the
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number of photons emitted by the interacting donor from 100, 500 to 10,000. As expected, for
larger values of τ0 and f, the normalized standard deviation is lower. Figure 2(c) shows the same
analysis but with a finite IRF of ∼38ps full-width at half-maximum (fwhm) as defined in [36].
The IRF has a significant impact only for high FRET efficiencies values when the fluorescence
lifetime estimates are in the order of magnitude of the IRF. In Fig. 2(d), we kept τ0 constant (3ns)
but varied the contribution of uncorrelated background from 0 (Fig. 1(c), bottom curves) to 100
(middle) and 1,000 (top) photons. The signal-to-background ratio (SBR) is 1, 5 and 100 (100
photons) and 0.1, 0.5 and 1 (1,000 photons) for f= 10, 50, 90%, respectively. The statistical error
in FRET estimates are comparatively robust to the presence of background. We remark that
although here we report the number of photons used for the numerical simulations, σ̃ does not
depend on the specific photon counts we simulated but only on their fractional contribution to a
FRET-dependent signal (e.g., f or SBR).

2.3. Photon-economy of seFRET in the absence of cross-talks

First we consider the case where only intrinsic noise is present with η and ε set to one to aid
the interpretation of the results. Figure 3 shows numerical simulations (see Methods for details)
carried out with one-hundred donor-acceptor pairs participating (E from 0% to 99%) in the
presence and absence of donor and acceptor molecules that do not undergo energy transfer
(fD=10-100%, fA=10-100%). Figure 3(a)–(b) shows that dFRET and aFRET are unbiased
estimators for fDE and fAE, respectively. Figure 3(c)–(d) shows that the signal-to-noise ratio
(SNR) in dFRET is always equal or better than aFRET. In these ideal conditions, dFRET is
infinitely precise both with no or 100% energy transfer as the absence of signal from either the
donor or acceptor channels unequivocally inform about the occurrence of these cases. The SNR
values for dFRET and aFRET depend on the relative number of acceptors and donors in the
sample; however, the estimators are quite robust in the absence of spurious signals. Indeed,

Fig. 3. seFRET in the absence of background. The dFRET (a) and the aFRET (b) estimators
are unbiased in the absence of background signals and, as expected they estimate the
quantities fDE and fAE, respectively. The intensity-normalized standard deviations for
dFRET (c) and aFRET (d) vary with a sweep of the parameters (nDA, nD, nA and E) albeit
in a narrow SNR area (gray) and with a perfect match between the analytical solutions (dark
gray curves) and the numerical simulations (circles). In yellow, the reference area explored
by TCSPC from Fig. 2(b) is shown.
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seFRET explores a relatively narrow SNR area when varying the values of fD and fA (Fig. 3(c)–(d),
grey area). In comparison, the SNR for an ideal TCSPC (Fig. 2(b) and Fig. 3(c)–(d), yellow
area) explores a much wider range at varying contribution of donors interacting with acceptor
fluorophores.

2.4. Photon-economy of seFRET in the presence of crosstalk

Next, we introduce spectral cross-talks (i.e., non-negligible AER and DER values) to evaluate
at which extent these non-idealities degrade the efficiency of seFRET. Table 2 shows crosstalk
values that are reported in the literature for a confocal and a wide-field microscope using typical
yellow and cyan fluorescent proteins [14,15]. Figure 4(a)–(b) shows that dFRET and aFRET
are unbiased estimators for fDE and fAE also in the presence of crosstalk. However, the noise
performance of the estimators (Fig. 4(c)–(d)) are significantly deteriorated, resulting into a

Table 2. properties of FRET pairs relevant to seFRET

FRET pair Microscope AER DER H ε Reference

CFP-YFP Confocal (system 1) 0.60 0.42 0.52 6.3 [14]

CFP-citrine Wide-field (system 2) 0.29 1.07 0.015 42 [15]

Fig. 4. seFRET in the presence of spectral bleed-through. dFRET (a) and aFRET (b) are
unbiased estimators as shown using the cross-talk reported in Table 1 for a representative
configuration of a confocal (system 1, red) and a wide-field (system 2, blue) microscope.
Crosstalk causes a significant deterioration of SNR values for dFRET (c,e) and aFRET
estimators (d,f). The loss of SNR is shown in (c-d) and its dependency on DER, AER and
the fraction of interacting donor/acceptor fluorophores is further illustrated in (e-f) where
the SNR regions for fD=fA=1 (grey), fD=0.1 and fA=1 (red) or fD=1 and fA=0.1 (blue) are
shown by varying DER and AER from 0 to 1. In yellow, we show also the TCSPC reference
area from Fig. 2(c).
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20-fold (system 2, blue) and a 5-fold (system 1, red) increase of standard deviations compared to
ideal measurements (black). To generalize these results, in Fig. 4(e)–(f) we show noise with a
parameter sweep, where we varied the AER and DER values from 0 to 1 with η and ε set to 1.
We also simulated three conditions where: all molecules participate to FRET (fD=fA=1, grey)
and only a minority of donor (fD=0.1, fA=1, red) or acceptor (fD=1, fA=0.1, blue) molecules
contribute to FRET. Lower values of fD and fA causes a significant deterioration of the SNR.
Donor imaging by FLIM does not suffer from spectral bleed-through and it is rather robust also to
non-idealities such as broadening of the IRF (Fig. 4(c)–(d), yellow areas). In realistic conditions,
FRET estimates by TCSPC tend to outperform seFRET methods.

2.5. seFRET in the presence of a background signal

We also studied how an unspecific background signal deteriorates the performances of dFRET
and aFRET. For simplicity, the numerical simulations are carried out assuming an equal relative
background in each channel (BDD, BAA and BDA), set to fractions ranging from 0 to 60%.
Figure 5(a)–(b) shows that both dFRET and aFRET are biased and provide inaccurate estimations
for FRET efficiency in the presence of background. These inaccuracies can be ameliorated by
experimental corrections and, whenever possible, by operating in high SBR conditions. Moreover,
background signals deteriorate SNR values for FRET estimations as shown in Fig. 5(c)–(d) for a
SBR set to 80% (note the logarithmic scale). For comparison, the lower and upper boundaries of
the TCSPC range shown in in Fig. 5(c)–(d) (yellow) corresponds to SBR values equal to infinity
(no background) and 50%, respectively. Therefore, fluorescence signals from non-specific stains
(e.g., autofluorescence) deteriorate estimate obtained by any techniques. However, TCSPC is
very robust to uncorrelated noise (e.g., dark current or stray light) as it can readily infer its value
with small compromises to its precision and accuracy.

Fig. 5. seFRET in the presence of background. The dFRET (a) and aFRET (b) are not
accurate estimators of fDE and fAE in the presence of background (simulated background-
to-signal ratio of 0%, black; 20%, yellow; 40%, orange and 60%, red). The analytical
solutions (solid lines) describing the noise in dFRET (c) and aFRET (d) match the numerical
simulations (solid circles) also in the presence of a background signal. We compare the noise
for the systems also shown in Fig. 3, i.e. system 1 (confocal, 0% (red) and 20% (orange)
background), system 2 (wide-field, 0% (blue) and 20% (cyan) background) and the reference
ideal case (0% (black) and 20% (dark gray) background). The SNR range explored by
TCSPC from Fig. 2(d) is shown in yellow.
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3. Discussion

FRET imaging is a powerful method used to probe cell biochemistry. It is thus not surprising
that so many FRET-based assays exist, from in vitro single-molecule detection [32] to in vivo
imaging [37,38], including common applications (e.g., qPCR and related hybridization assays
[39]) and specialist uses such as the study of protein conformations, interactions and modifications
[40]. Among the many FRET imaging techniques [41], FLIM and seFRET are two of the
most common quantitative methods. FLIM – TCSPC in particular – is regarded as the most
robust technique for FRET estimation [9] as it requires fewer control samples, and provides
robust and reproducible measurements. The choice between FLIM and seFRET often depends
on the availability of specialist instrumentation (e.g., for TCSPC) or requirements such as fast
acquisition speed (typically better for seFRET). However, breakthroughs in FLIM-enabling
technologies [42–48] and data analysis [49–51] are reducing the barrier to adoption for FLIM; as
the choice between FLIM and seFRET might slowly drift away from technical constraints, we
aimed to develop a comparative analysis of their limits from an information theory perspective.
Our work provides guidance for the choice and further optimization of these methodologies.
The analytical and numerical tools we developed can be used to compute reference values for
different seFRET configurations and TCSPC. As the role of photon-statistics in the various
implementations of FLIM (TCSPC, time-gating and frequency-domain) has been studied in-depth
[10,12,13,25,52–55] we focused on TCSPC as a representative standard to compare seFRET
to. Figures 2–5 and the case studies shown in Table 1 provide an assessment of performances
for seFRET and TCSPC in ideal conditions and illustrative cases representative of specific
fluorophores employed.
Interestingly, seFRET can outperform TCSPC in the ideal conditions of negligible spectral

crosstalk. Here, TCSPC can attain higher SNR only when a majority of donor fluorophores
are engaged in FRET or otherwise the dFRET estimator performs significantly better. A
better photon-efficiency of the dFRET estimator stems from the capability of dFRET to utilize
information from photons emitted from both donor and acceptor molecules. However, the higher
precision of dFRET is vastly reduced in the presence of realistic levels of spectral crosstalk or
background. We did not consider the additional statistical and systematic errors that the reference
measurements required by seFRET causes and other sources of noise manifesting in detectors
that do not operate in single-photon counting. Therefore, despite the excellent performance of
seFRET compared to TCSPC, the latter might generally outperform seFRET in reproducibility,
accuracy and precision in practical implementations. It is important to note that the appropriate
optimization of imaging parameters for seFRET can make seFRET rather competitive also for its
high precision, something that might be often underestimated. For instance, the use of long-Stokes
shift acceptor fluorophores for seFRET, not usually implemented to the best of our knowledge,
might result in vast improvements in the SNR of this intensity-based technique. We also note that
we compared seFRET to TCSPC as an established gold-standard in FRET detection. Although
the analysis we provided is representative of the limits on precision imposed by photon-statistics
for lifetime determination and thus FRET/FLIM, there are also many other implementations
of FLIM that can be successfully used for FRET estimation [1,5,24]. At high count-rates, for
instance, TCSPC deteriorates its precision and accuracy because of photon-losses and distortions
of the experimental decays caused by pulse pile-up and detector dead-time [12,56,57]. These
losses were not accounted in this framework. Time-gating or frequency-domain FLIM, which
photon-efficiency has been well characterized previously can provide high photon-budgets and
fast acquisition [10,12,29,52,53].

We note, however, that there are instances where FLIM might lose its competitive edge relative
to the simpler seFRET technique from a photon-efficiency perspective. Ultimately, one of
the most substantial differences between FLIM and seFRET is that FLIM is typically used for
the detection of donor fluorescence, permitting researchers to streamline the use of the visible
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spectrum or to optimize Foster distances with dark acceptors [58,59], avoiding crosstalk and issues
related to chromatic aberrations. On the contrary, seFRET uses the complete photon-budget
emitted by the FRET pair. For instance, the frequent cases where FRET-based biosensors do not
exhibit sufficient dynamic range in FLIM but work when imaged by seFRET, might be caused
by conditions in which typical FLIM applications, not detecting acceptor fluorescence, provide
poor SNR values (e.g., high FRET efficiencies or low fractional contributions of specific reporter
states). The use of dark chromophores as acceptor molecules is a strategy to increase sensitivity
of sensors [58–60] or to clear-up the visible spectrum for multiplexed detection of biochemical
reactions [60,61]. However, we can speculate that, in those cases where the benefits of a dark
chromophore might be irrelevant, the combination of seFRET and TCSPC (e.g., in dual-colour
or hyperspectral FLIM [34,46,62,63]) will provide significant improvements in the precision
of FRET estimation. A higher precision leads directly to an improvement in the capability
to resolve smaller biochemical differences in living cells. From a theoretical standpoint, this
improvement in biochemical resolving power can be understood from the general analysis of
Fisher information in multi-dimensional or multi-parametric detection systems (see for example
the photon partitioning theorem in [34,64]). From a practical point of view, dual-colour fast
high-resolution FLIM might be increasingly accessible thanks to the ongoing revolution in
time-resolved detection technologies and could provide yet unexplored ideal performances.

4. Methods

Analytical solutions were obtained manually, but their consistency was evaluated with the use of
Mathematica (Wolfram). Numerical simulations were generated with Matlab (Mathworks) as we
shown in Code 1 [65]. The Cramer-Rao lower bound for TCSPC was obtained with parameters
sweeps adapting code from [36]. We utilized their methods to compute the standard deviation,
normalized to the total (donor) photon counts, of the shorter fluorescence lifetime estimate. This
estimate is the fluorescence lifetime quenched via FRET and evaluated from a double-exponential
fit with constant background and known IRF. Figure 2(b) was generated using 1,000 photons
emitted by non-interacting donor molecules (i.e., fluorophores not participating in FRET) with
τ0=1, 3 or 10ns. Both τ0 and NP were used as fixed parameters. The number of photons emitted
by donors interacting with acceptor fluorophores (i.e., FRET-competent molecule) was varied
from 100, 500 to 10,000. E was varied from 0 to 100% in 128 steps on a power series. We
used TCSPC as a gold-standard reference and, therefore, we utilized parameters of high-end
systems with a laser repetition rate of 80MHz and 256 time-bins. Figure 1(b) was generated in
the same way, but using the experimental IRF provided in Ref. [36]. For Fig. 1(c), we simulated
only τ0=3ns. All other parameters the same as in Fig. 1(b), we varied the number of photons
in an uncorrelated background (as a fit parameter) for Fig. 1(c), including 0, 100 and 1,000
photons. All the results are shown as normalized by the total photon count emitted by the donor.
We validated error propagation in the unmixing equations with numerical simulations. First,
we synthesized noiseless images using the same mathematical framework; subsequently, we
added Poissonian noise and unmixed the images to determine how noise propagates to the FRET
estimates aFRET and dFRET. Results are presented as normalized to the total photon counts as
the shapes of the curves presented do not depend on this value (not shown). Results reported
in this work were obtained with Dell Precision workstation equipped with an Intel Xeon CPU
E5-1620v3 and 64GB of RAM and Matlab 2018a.

Appendix 1. Fisher information

The Fisher information matrix defines the information content of parameter estimators accordingly
to stochastic models of the experiments. The Fisher information matrix for fluorescence lifetime
sensing has been derived analytically and studied previously [25–27]. The Fisher information
matrix for sensitized emission FRET was described, to our knowledge, only for the case of

https://github.com/alesposito/FisherInformation
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single-molecule detection [32]. The information content of an experiment can be described by
the likelihood function (L):

L =
m∏

i=1

1/Ni![F(iU) − F((i − 1)U)]Nie−[F(iU)−F((i−1)U)] (2)

Here, we broadly adhere to the formalismdescribed inRef. [26] revisedwith some nomenclature
introduced in Ref. [32]. The likelihood function is the product of the probability to detect Ni
(i= 1, . . . , m) photons in m independent channels, photons that are Poisson distributed with a
rate defined by the model function F:

F(®u, ®q) =
∫ ®u

0
f (®υ, q)d®υ (3)

where f(u,q) is the expected average signal as a function of channel parameters u and experimental
parameters that should be estimated q. For instance, for time-resolved detection, u will equal
t and integration will be carried out over time bins. U is the bandwidth of the channel (e.g.,
spectral bandwidth, time-gate width). f can be factorized into parameters such as the excitation
rate (kex), the integration time of the signal T, and two functions that depend on the experimental
parameters (ζ(q)) and on the detection system (S(u)):

f (®u, ®q→) = kexTS(®u)ζ(®q) (4)

With distributions found in spectroscopy, the elements jij of the Fisher information matrix can
be computed as the negative of the expectation of the second derivative of f :

jij = −E
[
∂2lnf (®u, ®q)
∂qi∂qj

]
®u

(5)

When the signal is described by the Poisson statistics [32], Eq. (5) further simplifies to:

jjk = T
m∑

i=1

kiSi(®u)
ζi(®q)

∂ζi(®q)
∂qj

∂ζi(®q)
∂qk

(6)

In the next sections, we will describe the algebraic manipulations of seFRET formalism
required to obtain the separation of variables shown in Eq. (4) that will permit the estimation of
Eq. (6). The Fisher information matrix is essential when studying the noise performance of an
estimator as the Cramer-Rao theorem states that the lower bounds of the variance of the unbiased
estimators of q are defined by the inverse of the Fisher information matrix.

Appendix 2. Fisher information matrix and seFRET

The fluorescence emission as a function of wavelength (λ) for the case of seFRET can be
described as the sum of photons emitted by the donor fluorophore, photons emitted by sensitized
acceptors (SE) and photons emitted by acceptors upon direct excitation (DE) with the donor
excitation light source:

f (λ,E, nD, nA, nDA) = kexT{SD(λ)[nD + nDA(1 − E)] + nDASSE(λ)E + nASDE(λ)} (7)

SD, SSE and SDE include spectral characteristics of the fluorophores and detection system, e.g.,
quantum yields, molar extinction coefficients, spectral overlaps; nD, nA and nDA are the number
of non-interacting donor, non-interacting acceptor and interacting donor-acceptor molecules in
the sample, respectively. seFRET detected by the three-filter method is carried out with two
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acquisition channels for donor- and sensitized- emission that will effectively carry information
on energy transfer and a reference acquisition channel with direct excitation of the acceptor. The
main difference between single molecule seFRET and seFRET imaging is the requirement in the
latter to reference the measured FRET signal to the concentration of the acceptor molecules. To
compute the Fisher information matrix, we shall integrate Eq. (7):

F(λ) = kexT
{
[nD + nDA(1 − E)]

∫ λ

0
SD(λ)dλ + nDAE

∫ λ

0
SSE(λ)dλ + nA

∫ λ

0
SDE(λ)dλ

}
(8)

From Eq. (7), we can estimate the fluorescence intensity collected within a detection channel
optimized for donor emission fluorescence of spectral window [λd1, λd2]:

IDD = F(λd2) − F(λd1) = kexTSDD[nD + nDA(1 − E)] (9)

The cross-talk between the donor channel and acceptor emission is assumed to be negligible:∫ λd2
λd1

SD(λ)dλ = SDD;
∫ λd2
λd1

SSE(λ)dλ = 0;
∫ λd2
λd1

SDE(λ)dλ = 0; (10)

It is convenient also to model an unspecific background signal (BDD) and to introduce fA and fD,
the fractions of interacting donor or acceptors:

IDD = kexT{SDD[nD + nDA(1 − E)] + BDD} = kexT{SDDND[1 − fDE] + BDD} (11)

Where ND is the total number of donor fluorophores. In a similar way, the intensity collected
in the donor channel can be described as a function of fA and the total number of acceptor
fluorophores (NA). In summary:

IDD(fDE) = kexT[SDDND(1 − fDE) + BDD]

IDD(fAE) = kexT[SDDND − SDDNAfAE + BDD]
(12)

Similarly, we can evaluate the intensity collected in the sensitized emission channel by integration
of Eq. (8) over the spectral range [λa1, λa2]:

IDA = kexT{[nD + nDA(1 − E)]SDDDER + [nDAE + (nA + nDA)εAER]SAA + BDA} (13)

where BDA is an unspecific background and∫ λa2
λa1

SD(λ)dλ = SDDDER;
∫ λa2
λa1

SSE(λ)dλ = SAA;
∫ λa2
λa1

SDE(λ)dλ = εSAAAER (14)

ε is a proportionality factor between the intensity of the excitation light used for donor and
acceptor excitation. DER= [IDA/IDD]only−donor is the donor emission ratio, a control measurement
for the donor spectral bleed-through into the acceptor channel using a donor-only control
sample performed by measuring the proportion of signal in the acceptor channel relative to
the donor channel, and estimating the ratio between the intensities detected in the acceptor.
AER= [IDA/IAA]only−acceptor is the acceptor excitation ratio, a control measurement aimed to
estimate the direct excitation of acceptors by measuring the proportion of intensities in the
acceptor channel with a donor-only sample with excitation light optimal for donor and acceptor
excitation, respectively. Equation (13) can be rewritten using the definitions of fD, fA, ND and NA
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as:

IDA(fDE) = kexT{ND(SAA − SDDDER)fDE + SAANAεAER + SDDNDDER + BDA}

IDA(fAE) = kexT{NA(SAA − SDDDER)fAE + SAANAεAER + SDDNDDER + BDA}
(15)

The intensity value measured in the acceptor reference channel (IAA) does not depend on
energy transfer or the number of donor molecules and can be simply described as:

IAA = kexTε(SAANA + BAA) (16)

We can simplify the description of the Fisher information matrix using the following set of
substitutions, ED=fDE, EA=fAE, CD=SDDNDD, CA=SAANAA, η=SDD/SAA, NP=kexT. In this work,
the number of detected photons is considered equal to the number of absorbed photons (i.e.
assuming no losses from the optics or fluorophores) without any loss of generality. ED and EA are
the apparent FRET efficiencies measured in seFRET by the donor (dFRET) and acceptor (aFRET)
normalized estimators; CD and CA are the relative concentrations of donor and acceptor in
arbitrary units; η is the ratio of the relative brightness of the donor and the acceptor fluorophores.
Substituting the set of definition shown in Eq. (12), (15) and (16), we thus obtain:

IDD(ED,CD) = NP[CD(1 − ED) + BDD]

IDD(EA,CD,CA) = NP[CD − ηCAEA + BDD]

IDA(ED,CD,CA) = NP[(η
−1 − DER)CDED + CAεAER + CDDER + BDA]

IDA(EA,CD,CA) = NP[(1 − DERη)CAEA + CAεAER + CDDER + BDA]

IAA(CA) = NPε[CA + BAA]

(17)

Following the formalism introduced in [32], we rewrite Eq. (17) with the parametrization:

IDD(ED,CD,CA) = FDD[(1 − β−1DD)ζDD(ED,CD,CA) + β
−1
DD]

FDD = NP(1 + BDD)

βDD = (1 + BDD)B−1DD

ζDD(ED,CD,CA) = CD(1 − ED)

(18)



IDD(EA,CD,CA) = FDD[(1 − β−1DD)ζDD(EA,CD,CA) + β
−1
DD]

FDD = NP(1 + BDD)

βDD = (1 + BDD)B−1DD

ζDD(EA,CD,CA) = CD − ηCAEA

(19)



IDA(ED,CD,CA) = FDA[(1 − β−1DA)ζDA(ED,CD,CA) + β
−1
DA]

FDA = NP(1 + BDA)

βDA = (1 + BDA)B−1DA

ζDA(ED,CD,CA) = (η
−1 − DER)CDED + CAεAER + CDDER

(20)
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

IDA(EA,CD,CA) = FDA[(1 − β−1DA)ζDA(EA,CD,CA) + β
−1
DA]

FDA = NP(1 + BDA)

βDA = (1 + BDA)B−1DA

ζDA(EA,CD,CA) = (1 − DERη)CAEA + CAεAER + CDDER

(21)



IAA(CA) = FAA[(1 − β−1AA)ζAA(CA) + β
−1
AA]

FAA = εNP(1 + BAA)

βAA = (1 + BAA)B−1AA

ζAA(CA) = CA

(22)

The Fisher information matrix can be now estimated by computing a set of derivatives of the
functions ζ s and substituting in Eq. (6):

©­­­­«
∂ζDD
∂ED

∂ζDD
∂CD

∂ζDD
∂CA

∂ζDA
∂ED

∂ζDA
∂CD

∂ζDA
∂CA

∂ζAA
∂ED

∂ζAA
∂CD

∂ζAA
∂CA

ª®®®®¬
=

©­­­­«
−CD 1 0

(η−1 − DER)CD DER − (η−1 − DER)ED εAER

0 0 1

ª®®®®¬
(23)

©­­­­«
∂ζDD
∂EA

∂ζDD
∂CD

∂ζDD
∂CA

∂ζDA
∂EA

∂ζDA
∂CD

∂ζDA
∂CA

∂ζAA
∂EA

∂ζAA
∂CD

∂ζAA
∂CA

ª®®®®¬
=

©­­­­«
−ηCA 1 −ηEA

(1 − DERη)CA DER εAER + (1 − DERη)EA

0 0 1

ª®®®®¬
(24)

Each element of the Fisher information matrix can be then computed accordingly to Eq. (S5:

J11 = NPC2
D

[
1

CD(1 − ED) + BDD
+

η−1 − DER
(η−1 − DER)CDED + CAεAER + CDDER + BDA

]
(25)

J12 = J21 = NPCD

[
−

1
CD(1 − ED) + BDD

+
(η−1 − DER)CD[DER − (η−1 − DER)ED]

(η−1 − DER)CDED + CAεAER + CDDER + BDA

]
(26)

J13 = J13 = NPCD
(η−1 − DER)εAER

(η−1 − DER)CDED + CAεAER + CDDER + BDA
(27)

J22 = NP

{
1

CD(1 − ED) + BDD
+

[DER − (η−1 − DER)ED]
2

(η−1 − DER)CDED + CAεAER + CDDER + BDA

}
(28)

J23 = J32 = NP

{
[DER − (η−1 − DER)ED]εAER

(η−1 − DER)CDED + CAεAER + CDDER + BDA

}
(29)

J33 = NP(CA + BAA)
−1 (30)

Here, we show explicitly only the evaluation of the Fisher information matrix related to dFRET
but similar steps can be used also for aFRET. The Cramer-Rao bound for the variance of ED is
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the first element of the inverse matrix with elements described in Eq. (25)–(30).

σ2
E(dFRET) = N−1P {BDD[DER η (1 − ED) + ED]

2C−2D + BDA[η (1 − ED)]
2C−2D

+ BAA[ AER η (1 − ED)]
2C−2D ε + AER (AER + 1)[CA(1 − ED)

2η2]C−2D ε

+ DER[(DER + 1)(1 − ED)η + 2ED][(1 − ED)
2η]C−1D

+ ED(1 − ED)[ED(1 − η) + η]C−1D }

(31)

The variance in the FRET efficiency estimate is equal to the sum of a background variance
(σB

2), a variance which depends on the spectral bleed through (σSBT
2) and a variance which

does not depends on background contributions (σE
2) as shown in Eq. (1). We can write simpler

analytical solutions for each component:

σ̃2
B(dFRET) = σ̃2

BDD
(dFRET) + σ̃2

BDA
(dFRET) + σ̃2

BAA
(dFRET)

σ̃2
BDD
(dFRET) = BDD[DER η(1 − ED) + ED]

2C−2D

σ̃2
BDA
(dFRET) = BDA[η(1 − ED)]

2C−2D

σ̃2
BAA
(dFRET) = BAA[AER η(1 − ED)]

2C−2D ε

(32)


σ̃2

SBT (dFRET) = σ̃2
DER(dFRET) + σ̃2

AER(dFRET)

σ̃2
DER(dFRET) = AER(AER + 1)[CA(1 − ED)

2η2]C−2D ε

σ̃2
AER(dFRET) = DER[(DER + 1)(1 − ED)η + 2ED][(1 − ED)

2η]C−1D

(33)

σ̃2
E(dFRET) = ED(1 − ED)[ED(1 − η) + η]C−1D (34)

Similarly, we can evaluate the analytical descriptions for the noise of the estimator aFRET:

σ̃2
B(aFRET) = σ̃2

BDD
(aFRET) + σ̃2

BDA
(aFRET) + σ̃2

BAA
(aFRET)

σ̃2
BDD
(aFRET) = BDDDER C−2A

σ̃2
BDA
(aFRET) = BDAC−2A

σ̃2
BAA
(aFRET) = BAA[ε AER EA]

2C−2D ε−1

(35)


σ̃2

SBT (aFRET) = σ̃2
DER(aFRET) + σ̃2

AER(aFRET)

σ̃2
DER(aFRET) = DER(DER + 1)[CD − CAEAη]C−2A

σ̃2
AER(aFRET) = AER[(AER + 1)ε + 2EA]C−1A

(36)

σ̃2
E(aFRET) = EA(1 + ε−1A)C−1A (37)

A comparison between different nomenclatures used in the literature is shown in Tables 3–5.

Table 3. Conversion of nomenclature from Elder et al. [14]

AER DER α β

In this work AER DER ηDER (AERε)−1

In Hoppe et al. α β ξβγ−1 γ−1
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Table 4. Conversion of nomenclature from this work

AER DER η E

In Elder et al. AER DER α/DER β/AER

In Hoppe et al. α β ξγ−1 (αγ)−1

Table 5. Conversion of nomenclature from Hoppe et al. [15]

A β ξ Γ

In this work AER DER η(AERε)−1 AERε

In Elder et al. AER DER α(DERβ)−1 β−1
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